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Abstract. Many years ago Zel’dovich showed how the Lagrange condition in the theory of
differential equations can be utilized in the perturbation theory of quantum mechanics. Zel’dovich’s
method enables us to circumvent the summation over intermediate states. As compared with other
similar methods, in particular the logarithmic perturbation expansion method, we emphasize that
this relatively unknown method of Zel’dovich has a remarkable advantage in dealing with excited
states. That is, the ground and excited states can all be treated in the same way. The nodes of the
unperturbed wavefunction do not give rise to any complication.

1. Introduction

The Rayleigh–Schrödinger perturbation theory in quantum mechanics involves summations
over intermediate states. This usually requires evaluating a large number of matrix elements
of the perturbative interaction. There are alternative forms of perturbation theory in which the
summations can be circumvented. They are Sternheimer’s method [1], Dalgarno and Lewis’
(DL) method [2–4] and the logarithmic perturbation expansion (LPE) method developed by
Aharonov and Au [5–8]. In both the Sternheimer’s and DL methods one has to solve an
inhomogeneous differential equation. The LPE method is more straightforward in the sense
that it does not require solving any equation. The entire perturbation calculation is reduced to
that of quadrature. If the unperturbed wavefunction has a node or nodes, however, the LPE
method becomes quite involved. This is the case for excited states.

The purpose of this paper is to examine yet another form of perturbation theory that
was developed by Zel’dovich in 1956 [9, 10]. In solving the Schrödinger equation in the
presence of perturbation, Zel’dovich made ingenious use of the Lagrange condition of the
theory of differential equations and reformulated the perturbation theory in such a way so
that the summation over the intermediate states is avoided. In Zel’dovich’s method the entire
perturbation calculation is again reduced to that of quadrature. In this respect, Zel’dovich’s
method is similar to the LPE method which was developed much later. In dealing with excited
states, however, this seldom quoted method of Zel’dovich has a remarkable advantage over the
LPE method. Unlike in the LPE method, the nodes of the unperturbed wavefunction do not
give rise to any complication. Zel’dovich’s method can handle excited states and the ground
state exactly in the same manner.
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We summarize Zel’dovich’s method in section 2 and examine its relation to the DL and
LPE methods in section 3. In section 4 we illustrate Zel’dovich’s method by applying it to
examples. A summary is given in section 5.

2. Zel’dovich’s method

We consider a particle in a stationary bound state in one dimension, which can be the ground
state or any of the excited states. This can be extended to the three-dimensional case with a
central potential in a straightforward manner. Let us start with the unperturbed system that is
described by the Schrödinger equation

− h̄
2

2m
ψ ′′0 (x) + V0(x)ψ0(x) = E0ψ0(x) (1)

where the notation is standard. For example,m is the mass of the particle andψ ′′0 (x) =
d2ψ0(x)/dx2. It is understood that equation (1) can be solved exactly. We are interested in
finding approximate solutions of

− h̄
2

2m
ψ ′′(x) + [V0(x) + V1(x)]ψ(x) = Eψ(x) (2)

whereV1(x) is the perturbation potential.
LetR(x) andI (x) be a regular and an irregular solution, respectively, of the unperturbed

Schr̈odinger equation (1) with eigenvalueE0. R(x) satisfies the physically required boundary
condition for a bound state butI (x)does not.R(x) can be taken as the unperturbed, normalized
wavefunction as follows:

ψ0(x) = R(x)
∫ ∞
−∞

dx R2(x) = 1. (3)

I (x) may or may not be normalizable.
Let us now briefly digress into the three-dimensional case. By separating the angular part

we obtain an equation for the radial part of the wavefunction with variabler with its range
(0,∞). The unperturbed potential is of the form

h̄2

2m

l(l + 1)

r2
+ V0(r). (4)

If V0(0) is finite,R(r) andI (r) behave asrl+1 andr−l , respectively, asr → 0. If V (r)→ 0
asr →∞, thenR(r)→ 0 while I (r) diverges. Such anI (r) is not normalizable.

Returning to the one-dimensional case with variablex in (−∞,∞), we now write the
unknownψ(x) of (2) as

ψ(x) = α(x)R(x) + β(x)I (x) (5)

whereα(x) andβ(x) are unknown functions. In order for the irregular solutionI (x) not to
disturb the boundary condition forψ(x), we require that

β(−∞) = β(∞) = 0. (6)

Furthermore, we require thatα(x) andβ(x) satisfy the ‘Lagrange condition’

α′(x)R(x) + β ′(x)I (x) = 0 (7)

whereα′(x) = dα(x)/dx. By substituting (5) into (2) and remembering (7), we obtain

h̄2

2m
[α′(x)R′(x) + β ′(x)I ′(x)] + [1E − V1(x)][α(x)R(x) + β(x)I (x)] = 0 (8)
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where1E is the energy shift caused byV1(x),

E = E0 +1E. (9)

Equations (7) and (8) lead to

α′(x)
I (x)

= −β
′(x)
R(x)

= − 2m

h̄2W
[1E − V1(x)][α(x)R(x) + β(x)I (x)]. (10)

HereW is the Wronskian

W = R′(x)I (x)− R(x)I ′(x) (11)

which is a constant. We have not made any approximations so far.
We now expand1E, ψ(x), α(x) andβ(x) as

1E = E1 +E2 + · · · (12)

ψ(x) = ψ0(x) +ψ1(x) +ψ2(x) + · · · (13)

α(x) = α0 + α1(x) + α2(x) + · · · α0 = 1 (14)

β(x) = β0 + β1(x) + β2(x) + · · · β0 = 0 (15)

where the suffix refers to the order of perturbation,

ψn(x) = αn(x)R(x) + βn(x)I (x). (16)

Eachβ1, β2, . . . has to conform to (6). By putting the above expansions into (8) and collecting
the first-order terms, we obtain

α′1(x)
I (x)

= −β
′
1(x)

R(x)
= − 2m

h̄2W
[E1− V1(x)]R(x) (17)

which leads to

α1(x) = − 2m

h̄2W

∫ x

−∞
dy [E1− V1(y)]R(y)I (y) (18)

β1(x) = 2m

h̄2W

∫ x

−∞
dy [E1− V1(y)]R

2(y). (19)

There is an arbitrariness regarding the lower end of the integral of (18). We have taken it to
be−∞ since we usually find this most convenient. We discuss this choice in section 3. If we
choose a different lower end, this effectively changesα0. This change can be suppressed by
renormalizingR(x). Condition (6) together with (19) leads to

E1 =
∫ ∞
−∞

dx V1(x)R
2(x) (20)

which is the well known first-order energy shift.
In the second order we obtain

α2
′(x)
I (x)

= −β2
′(x)

R(x)
= − 2m

h̄2W
{E2R(x) + [E1− V1(x)][α1(x)R(x) + β1(x)I (x)]}. (21)

Recalling (6) that impliesβ2(∞) = 0 we obtain from (21)

E2 = −
∫ ∞
−∞

dx [E1− V1(x)][α1(x)R(x) + β1(x)I (x)]R(x)

= 2m

h̄2W

∫ ∞
−∞

dx
∫ x

−∞
dy [E1− V1(x)][E1− V1(y)]

×R(x)R(y)[R(x)I (y)− I (x)R(y)]. (22)
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Let us examine the integral that contains the termR(x)I (y) of the last square brackets. It can
be manipulated as∫ ∞
−∞

dx
∫ x

−∞
dy [E1− V1(x)][E1− V1(y)]R

2(x)R(y)I (y)

=
∫ ∞
−∞

dx
∫ ∞
x

dy [E1− V1(x)][E1− V1(y)]R(x)R
2(y)I (x)

= −
∫ ∞
−∞

dx
∫ x

−∞
dy [E1− V1(x)][E1− V1(y)]R(x)I (x)R

2(y). (23)

From the first to the second line, we have changed the order of integrations and interchanged
the variablesx andy. From the second to the third line, we have used (20). By using the above
results,E2 can be reduced to

E2 = − 4m

h̄2W

∫ ∞
−∞

dx
∫ x

−∞
dy [E1− V1(x)][E1− V1(y)]R(x)I (x)R

2(y). (24)

If I (x) is known as well asR(x),E2 can immediately be evaluated. IfI (x) is not known,
we can determineI (x) in terms ofR(x). This can be done by using

R2(x)
d

dx

[
I (x)

R(x)

]
= −W (25)

I (x) = −WR(x)
∫ x dz

R2(z)
. (26)

This concludes our review of Zel’dovich’s method [9,10]. What we present below is new.
In (26) we have not specified the lower limit of the integral. This is because the lower

limit does not affectE2, as can be seen from (22). This practically means that the integral of
(26) can be taken as an indefinite integral. One may well wonder about the following question.
SupposeR(x) has a node, say atx = 0, then how doesI (x) behave aroundx = 0? When
R(0) = 0 we can safely assume thatR′(0) 6= 0. Then (11) leads to

I (0) = W

R′(0)
. (27)

HenceI (x) should have no singularity atx = 0. Although the integral of (26) as such is
questionable, we can interpret the product of the integral andR(x) such that the product
conforms to (27). Let us assume thatR(x) has only one node atx = 0 and write it as

R(x) = xf (x) f (0) = R′(0) 6= 0. (28)

Then we proceed as

I (x) = −Wxf (x)
∫ x dz

z2f 2(z)

= −Wxf (x)
[
− 1

xf 2(x)
+
∫ x 1

z

d

dz

1

f 2(z)

]
. (29)

In the lastz integration with the factor 1/z, we take the principal part. One can confirm that
thisI (x) does satisfy the Schrödinger equation (1) by directly substituting it into the equation.
In the above we assumed that the node is atx = 0 but it can be shifted to an arbitrary position.
The case with more than one node can be done in a similar fashion. In (24) we have the
combination ofR(x)I (x). The additional factor ofR(x) that appears inE2 doubly ensures
that the node ofR(x) does not do any harm.

In the case where we deal with (26) numerically, one can proceed in the following way.
Let us assume thatR(x) has only one node atx = 0. In numerical work we have to specify the
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lower end of the integral. Let us start with the case ofx < 0. We choose the lower end to be an
arbitrary negative number. Then (26) is well defined. We can evaluate it with no difficulty. It
is understood that one takes exactly the same mesh points forx andz. Next, if x > 0 we take
the lower end to be a positive number so that (26) is again well defined. TheI (x) calculated
in this way is discontinuous atx = 0. We simply make it continuous atx = 0 by adding a
constant to the positive (or negative)x part ofI (x). TheI (0) so determined is related toW
through (27). Recall thatW can be chosen arbitrarily. If there is more than one node, this
procedure can be repeated. If the two nodes are atx = 0 andx = 1, for example, we calculate
I (x) piecewise in the regions of(−∞, 0), (0, 1) and(1,∞). In each of the regions we choose
the lower end of the integral such that the integral is well defined. Then we join the obtained
integrals smoothly atx = 0 andx = 1.

One can go on to higher orders in a successive manner. For example, in the third order
we obtain

α3
′(x)
I (x)

= −β3
′(x)

R(x)
= − 2m

h̄2W
{E3R(x) +E2[α1(x)R(x) + β1(x)I (x)]

+[E1− V1(x)][α2(x)R(x) + β2(x)I (x)]}. (30)

This leads to

E3 = −
∫ ∞
−∞

dx R(x){E2[α1(x)R(x) + β1(x)I (x)]

+[E1− V1(x)][α2(x)R(x) + β2(x)I (x)]}. (31)

All the formulae presented in this section can be applied to any of the excited states as
well as to the ground state. This is an important advantage of Zel’dovich’s method over the
LPE method.

3. Relation to the DL and LPE methods

Let us first examine the relation between Zel’dovich’s method and the DL method. From their
construction, it is clear thatψ0(x) andψ1(x) satisfy the DL equation

− h̄
2

2m
ψ ′′1 (x) + V0(x)ψ1(x) = [E1− V1(x)]ψ0(x). (32)

The first line of (22) is nothing but

E2 = −
∫ ∞
−∞

dx [E1− V1(x)]ψ0(x)ψ1(x). (33)

Therefore, the two methods are equivalent.
Below (19) we mentioned the arbitrariness regarding the lower limit of the integral of

α1(x) of (18). Essentially the same arbitrariness appears in solving the DL equation. This was
discussed by Mavromatis in some detail [4]. The choice of−∞ in (18) (and−a in examples 1
and 2 of section 4) is a matter of convenience.

Next let us examine the relation to the LPE method. Equation (24) can be rewritten as

E2 = − 2m

h̄2W

∫ ∞
−∞

dx
I (x)

R(x)

d

dx

{∫ x

−∞
dy [E1− V1(y)]R

2(y)

}2

. (34)

By integrating the right-hand side by parts and using (26) we obtain

E2 = −2m

h̄2

∫ ∞
−∞

dx

R2(x)

{∫ x

−∞
dy [E1− V1(y)]R

2(y)

}2

. (35)
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This expression forE2 is the same as (23) of Aharonov and Au [5] which they derived for
the ground state. See also (19) of [7]. For the ground state Zel’dovich’s method is therefore
equivalent to the LPE method .

There is a problem, however, on the part of the LPE method in dealing with excited states.
TheR(x) of an excited state has a node or nodes. SupposeR(x) has a node, then thex-integral∫∞
−∞(dx/R

2) . . . of (35) is simply divergent. This is so unless the{· · ·} of (35) vanishes exactly
at the position of the node (which does not usually happen). In the presence of the node, then,
the transformation from (34) to (35), as such, by means of integration by parts is not valid. In
the LPE method the singularity due to the node ofR(x) has to be dealt with carefully as was
done in [5,6,8]. Every time another node appears inR(x) almost the entire set of formulae will
change. The LPE method in such a case is quite cumbersome. In contrast to this, Zel’dovich’s
method has no such complication as we stated at the end of section 2. We will illustrate it
in the next section. In Zel’dovich’s method, we use (24) forE2, but not (35). The latter, of
course, can be used ifR(x) has no node.

SupposeR(x) has a node atx = c0, thenψ(x) will have a node at, say,x = c that is
shifted from but in the vicinity ofx = c0:

R(c0) = ψ0(c0) = 0 ψ(c) = 0. (36)

Aharonov and Au developed a method for determining the shift of the node position [5]. In
Zel’dovich’s method this can be done as follows. Let us expandc as

c = c0 + c1 + c2 + · · · . (37)

By expandingψ(c) = 0, we obtain

c1ψ
′
0(c0) +ψ1(c0) = 0 (38)

c2ψ
′
0(c0) + c1ψ

′
1(c0) +ψ2(c0) = 0 (39)

and so on. Equation (38) leads to

c1 = −ψ1(c0)

ψ ′0(c0)
= −β1(c0)I (c0)

R′(c0)
. (40)

By using (28) with a node atx = c0, we find thatI (c0) = W/R′(c0). Thus we obtain

c1 = −Wβ1(c0)

R′2(c0)
. (41)

This is how the node of the perturbed wavefunction can be determined. Equation (40) is the
same as (37) of [5], but it seems to us that the derivation given above is simpler than that given
in [5].

In the LPE method, in order to be able to calculateE2, one has to knowc1. In Zel’dovich’s
method,E2 can be calculated without knowingc1. If one wants to knowc1 within Zel’dovich’s
method, one can use (40) or one can directly determine it fromψ0(x) + ψ1(x) = 0, where
ψ1(x) = α1(x)R(x) + β1(x)I (x).

4. Examples

We examine two examples, an infinite square-well potential and a harmonic oscillator. We
examine excited states as well as the ground state. We assume the same perturbation potential
in both examples:

V1(x) = λx (42)

whereλ is a constant.
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Example 1. Infinite square-well potential. The unperturbed potential is

V0(x) =
{

0 if |x| < a

∞ if |x| > a.
(43)

This reduces the space from(−∞,∞) to (−a, a). The unperturbed wavefunction can be taken
as

ψ0(x) = R(x) = 1√
a

cos
(
kx − νπ

2

)
k = π

2a
(ν + 1) (44)

whereν = 0 for the ground state andν = 1, 2, . . . for excited states. The unperturbed energy
isE0 = (h̄k)2/(2m). For the irregular solution we take

I (x) = 1√
a

sin
(
kx − νπ

2

)
. (45)

This can be obtained from (26) by choosing the Wronskian as

W = − k
a
. (46)

Note that
∫ x dz/R2(z) = (a/k) tan(kx − νπ/2) is singular at the nodes ofR(x). This

singularity is cancelled when the integral is multiplied withR(x).
It is clear thatE1 = 0. Forα1(x) andβ1(x) we obtain

α1(x) = −2m

h̄2

λ

8k3
[2ka + (−1)ν(sin 2kx − 2kx cos 2kx)] (47)

β1(x) = 2m

h̄2

λ

8k3
[2k2(x2 − a2) + 1 + (−1)ν(cos 2kx + 2kx sin 2kx)]. (48)

Note thatβ1(a) = β1(−a) = 0. Putting the aboveR(x) andI (x) into (24), we obtain

E2 = 2m

h̄2

λ2

48k4
[4(ka)2 − 15]. (49)

If we put a = π/2, the aboveE2 for the ground state (ν = 0) agrees with that of example A
of [4]. Equation (49) is also valid for all excited states.

Let us examine the nodes of the wavefunction. We can determine the positions of all the
nodes but let us focus on the cases where the unperturbed wavefunction has odd parity and see
how the node at the origin is shifted by perturbation. We start withc0 = 0 and determinec1.
Equation (39) gives

c1 = 2m

h̄2

λ

k4
[−2(ka)2 + 1 + (−1)ν ] (50)

which is negative. The node is shifted to the negative side of the origin. This is because the
perturbation force acts in that direction.

Example 2. Harmonic oscillator. The unperturbed potential is

V0(x) = 1
2mω

2x2 (51)

whereω > 0 is a constant. We assume the sameV1(x) of (42). The unperturbed wavefunction
can be taken as [11]

ψ0(x) = R(x) = NνHν(γ x)e− 1
2 (γ x)

2
γ 2 = mω

h̄
Nν

2 = γ

2ν
√
πν!

(52)

whereν = 0, 1, 2, . . . . Hν is the Hermite polynomial of orderν; H0(ξ) = 1,H1(ξ) = 2ξ ,
H2(ξ) = 4ξ2−2, etc. Note that suffixν refers to the unperturbed state that is being considered.
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It should not be confused with suffixn of ψn, En, etc, that refers to the order of perturbation.
The unperturbed energy isE0 = (ν + 1

2)h̄ω. It is clear thatE1 = 0.
The unperturbed Schrödinger equation (1) withE0 = (ν + 1

2)h̄ω has the following two
independent solutions:

E(0)
ν (γ x) =

√
2e−

1
4 (γ x)

2

1F1

(
−ν

2
; 1

2
; (γ x)

2

2

)
(53)

E(1)
ν (γ x) = 2γ xe−

1
4 (γ x)

2

1F1

(
1− ν

2
; 3

2
; (γ x)

2

2

)
(54)

whereE(0)
ν andE(1)

ν are the Weber functions and the1F1 are the confluent hypergeometric
(or Kummer) functions [11]. They have no singularity except that they diverge asx →∞ or
−∞. TheR(x) of (52) is a special linear combination of the two solutions such that it vanishes
as|x| → ∞ [12]. Any one of the two solutions or their linear combination, other than that
of R(x), can be taken asI (x). It would be more interesting, however, to determineI (x) by
means of (26), which we will do below.

Let us focus on the three states (ν = 0, 1, 2) of the lowest energies. For the ground state
with ν = 0, the irregular solution is given by

I (x) = −W
N0

e−
1
2 (γ x)

2
∫ x

e(γ z)
2
dz. (55)

It is straightforward to work out (24) to find

E2 = 4m(N0λ)
2

h̄2

∫ ∞
−∞

xe−(γ x)
2
dx
∫ x

e(γ z)
2
dz
∫ x

−∞
ye−(γy)

2
dy

= −2m(N0λ)
2

(h̄γ )2

∫ ∞
−∞

xe−2(γ x)2 dx
∫ x

e(γ z)
2
dz = − λ2

2mω2
. (56)

As we stated earlier,E2 does not depend on the choice of the lower limits of thez integrations
of (55) and (56).

For the first excited state withν = 1 we obtain

I (x) = −W
N1
γ xe−

1
2 (γ x)

2
∫ x e(γ z)

2

(γ z)2
dz

= W

N1γ
e

1
2 (γ x)

2

[
1− 2γ 2xe−(γ x)

2
∫ x

e(γ z)
2
dz

]
. (57)

TheR(x) has a node atx = 0. We have to interpret thez integration of (57) as we explained
towards the end of section 2. ThisI (x) satisfies (1).

The energy shiftE2 can be worked out as follows:

E2 = 4m(N1λ)
2

h̄2

∫ ∞
−∞

x(γ x)2e−(γ x)
2
dx
∫ x e(γ z)

2

(γ z)2
dz
∫ x

−∞
y(γy)2e−(γy)

2
dy

= − 2m(N1λ)
2

h̄2

∫ ∞
−∞

x3[(γ x)2 + 1]e−2(γ x)2 dx
∫ x e(γ z)

2

(γ z)2
dz = − λ2

2mω2
. (58)

From the second line to the last we performed integration by parts but there is no danger in
that.

If we apply (35) of the LPE method to the first excited state, we meet difficulty in thex

integration. It is clear that they integral of (35) does not vanish forx = 0 whereR(x) has
a node. Hence thex integral diverges. Aharonov and Au developed different formulae for
excited states but we do not pursue those here [5,6,8].
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Let us examine the node of the perturbed wavefunction ofν = 1. We know thatc0 = 0
and we want to determinec1. β1(x) is given by

β1(x) = 2mλ√
πh̄2Wγ

[(γ x)2 + 1]e−(γ x)
2
. (59)

Then we obtain from (40)

c1 = − λ

mω2
. (60)

As the last exercise let us briefly examine the second excited state,ν = 2. R(x) of this
state has two nodes. Again, by using (26) we obtain the irregular solution as

I (x) = − W

2N2
[2(γ x)2 − 1]e−

1
2 (γ x)

2
∫ x e(γ z)

2

[2(γ z)2 − 1]2
dz

= W

4N2γ
e

1
2 (γ x)

2

{
1− [2(γ x)2 − 1]e−(γ x)

2
∫ x

e(γ z)
2
dz

}
. (61)

This I (x) has no singularity. The energy shiftE2 can be calculated by using (24) in the
same manner as in theν = 1 case. The calculation involved is somewhat complicated but
straightforward. We again findE2 = −λ2/(2mω2). This exercise clearly illustrates the
superiority of Zel’dovich’s method over the LPE method. The state with a wavefunction with
two nodes is almost prohibitive in the LPE method. In fact, the LPE method has not been
developed for states with more than one node.

5. Summary

We reviewed Zel’dovich’s method of perturbation theory and compared it with the DL and
LPE methods. Zel’dovich’s method enables us to circumvent summations over the intermediate
states. In this respect Zel’dovich’s method is similar to the DL and LPE methods. Unlike the DL
method, Zel’dovich’s method does not involve solving any equations. The entire calculation
is reduced to that of quadrature. This feature of Zel’dovich’s method is very similar to that of
the LPE method of Aharonov and Au [4–6]. Zel’dovich’s method, however, has a remarkable
advantage over the LPE method. It can be applied to excited states exactly in the same manner
as to the ground state. The nodes of the wavefunction that are found for an excited state do
not require any modifications of the method. We have illustrated Zel’dovich’s method in two
examples, and shown how the ground and excited states can be handled exactly in the same
straightforward manner.

One appreciates the advantage of Zel’dovich’s method over the LPE method if one sees
the modifications that are required in the latter in handling excited states [5, 6, 8]. The LPE
method has been developed only for the cases of no node and one node of the unperturbed
wavefunction. If there are two or more nodes, the LPE is almost prohibitive. We believe that
Zel’dovich’s method deserves much more attention than it has received so far.
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